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The questions raised i n  t h i s  paper concerning t h e  proper method of 
wr i t ing  aerodynamic forces  and moments f o r  combined motions have been 
reconsidered. Analysis based on po ten t i a l  flow theory reveals  t h a t  t he  
point  of view taken i n  the first p a r t  of the repor t  (pp. 7-10) and i n  the 
concluding sect ion (pp. 17, 18) i s  incorrect;  t h e  accepted method which 
was  disputed by the  authors (pp. 6, 7) i s  i n  f a c t  cor rec t .  

Consider t h e  tes t  case, steady c i r cu la r  motion, u = constant,  
A = constant.  The argument contained i n  the repor t ,  wherein it i s  asser- 
t ed  that aerodynamic accelerat ion terms should vanish f o r  this motion, i s  
based i m p l i c i t l y  on the incorrect  assumption that t h e  s teady-state  poten- 
t i a l  equation re fer red  t o  ro t a t ing  coordinates f ixed  i n  the body r e t a i n s  
the  same form it has f o r  steady flow i n  nonrotating coordinates.  
is ,  it was assumed t h a t  t he  d i f f e r e n t i a l  equation f o r  s teady-state  
per turba t ion  p o t e n t i a l  i n  t he  body-fixed c y l i n d r i c a l  coordinates 
i s  

That 

x, r, p 

i n  which case there  i s  no p o s s i b i l i t y  f o r t h e  existence of acce lera t ion  
forces  and moments. Closer ana lys i s  shows, however, that the p o t e n t i a l  
equation becomes 

where 0 i s  t h e  angular ve loc i ty  of t h e  body-fixed coordinate system 
about t he  axis of symmetry. The changed form of t h e  p o t e n t i a l  equation 
m u s t  be in t e rp re t ed  as meaning that even though t h e  flow appears steady 
t o  an observer i n  t h e  body-fixed coordinate system, he i s  s t i l l  able  t o  
discern that t h e  body i s  turning. 
aerodynamic acce lera t ion  terms a r e  necessar i ly  absent when t h e  flow is 
steady. 
per turbat ion p o t e n t i a l  equation becomes 

This fac t  inva l ida tes  t h e  argument that 

For unsteady flow r e l a t i v e  t o  body-fixed coordinates t h e  
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The solut ion t o  t h i s  equation, subject  t o  the  appropriate boundary 
conditions, has been obtained and confirms the  form of the  results i n  
current usage (eqs.  (11) and (12)). 

The section e n t i t l e d  "Magnus Forces" (pp. 10-12) remains correct  
and the  section e n t i t l e d  "Significance of New Formulation" (pp. 12-17) 
can be made correct  i f  the  subs t i tu t ion  

i s  made i n  equation (31) and the rea f t e r .  

ii 
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TECHNICAL NOTE D-316 

STUDY OF THE AERODYNAMIC FORCES AND MOMENTS 

ON BODIES OF REVOLUTION I N  COMBINED 

PITCHING AND YAWING MOTIONS 

By Murray TobaJs and Henry C. Lessing 

SUMMARY 

Signif icant  e r ro r s  a re  pointed out i n  the  accepted pract ice  of 
wri t ing the  aerodynamic forces  and moments t h a t  a c t  on a body of revolution 
during pi tching and yawing motion. A more cor rec t  formulation i s  presented 
which shows t h a t ,  even with l i n e a r  aerodynamic coef f ic ien ts ,  the d i f f e r -  
e n t i a l  equations governing the  motion are fundamentally nonlinear. This 
permits a n  explanation of c e r t a i n  types of motion which have been observed 
experimentally and which have been explainable previously only with the  
assumption of nonlinear aerodynamic charac te r i s t ics .  

INTRODUCTION 

A s  the  performance and appearance o f  modern a i r c r a f t ,  missi les ,  and 
rockets have come t o  resemble those of p ro jec t i l e s ,  it has been recognized 
t h a t  there  i s  a need f o r  a uni f ied  theory of motion which includes i n  a 
common language those special  fea tures  of p r o j e c t i l e  motion familiar t o  
b a l l i s t i c i a n s  and those fea tures  of airplane motion familiar t o  aerody- 
namicists. Several researchers have sought t o  f u l f i l l  t h i s  need, t he  most 
noteworthy contributions being those of Nicolaides ( r e f .  1) and Charters 
( r e f .  2).  

While the kinematic aspects of t h e  problem have been successfully 
united i n  these contributions,  the  aerodynamic aspects s t i l l  r e f l e c t  t he  
p r io r  i n t e r e s t s  of aerodynamicists accustomed t o  t he  motions of winged 
vehicles.  Winged vehicles,  of course, generally have preferred modes of 
transverse motion which deviate on ly  s l igh t ly  from f ixed  reference planes, 
and t h i s  has l e d  the  aerodynamicist t o  view those motions as project ions 
i n  such planes. This concept has been carr ied over i n t o  the  uni f ied  theory 
and the  purpose here will be t o  show that it leads t o  e r ro r s  when used t o  
represent the  aerodynamic forces  and moments ac t ing  on a vehicle t h a t  has 
no preferred plane of transverse motion. Then it will be shown by adapting 
an older concept, namely the  use of planes t h a t  ro t a t e  with the r e su l t an t  
angle-of-attack vector ( r e f s .  3 and 4), t ha t  these e r ro r s  can be avoided 
and a more correct  representat ion of the forces  and moments can be e a s i l y  
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formulated. Final ly ,  r e su l t s  of t he  revised formulation w i l l  be incorpo- 
ra ted  i n  t h e  equations governing t h e  motion of  bodies of  revolution and a 
discussion will be given of t h e  types of motion made explainable by the  
changes. 

SYMBOLS 

c, 

‘mab 

CN 

cNa Y c% 

pi tching moment 
& S I  

pitching-moment coef f ic ien t ,  

rate of change of Magnus pitching-moment coef f ic ien t  about 
an axis i n  the  plane of  b with respect t o  a and b; (3) ; a = -  Pl , ~ ; b = a , -  P l  92 - cil 

h a  ab a+o V ’ V  
b - + o  

normal force 
&S 

normal-force coef f ic ien t ,  

1 
r a t e  of change of Magnus normal-force coef f ic ien t  normal 

t o  t h e  plane of b with respect t o  a and b; (3) ; a = -  E ; b = a , -  ql - &l 4 

d a  ab a - + o  V J V  V ’ V  
b + o  

r a t e  of change of normal-force and pitching-moment coeffi-  

91 c ien t s  with pi tching veloci ty  parameter - * V ’  

r a t e  of change of normal-force and pitching-moment coeffi-  

c i en t s  with angle of attack; (2)a+o, (2)a+o 
r a t e  of change of normal-force and pitching-moment coeffi-  

c i en t s  with time r a t e  of change of angle-of-attack 

C N ( U )  ,Cm( 0 )  normal-force coeff ic ient  i n  the  plane of u and pitching- 
moment coef f ic ien t  about an ax is  normal t o  the  plane 
of u 

c 

C N ( I O ) , C , ( I O )  normal-force coeff ic ient  i n  a plane normal t o  the  plane of 
u and pitching-moment coeff ic ient  about an axis  i n  t h e  
plane of u 
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pfqJr  
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c 
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P 

side-force coeff ic ient ,  s ide force w 
-CN 

moment of i n e r t i a  about an axis normal t o  the  axis  of 
symmetry and passing through the  center  of gravi ty  

aerodynamic coupling term (eq. (34))  

reference length 

components of angular ve loc i ty  about X,Y,Z axes 

e f fec t ive  spin r a t e ,  6 - i 
dynamic pressure, I pV2 

reference a rea  

time 

components of velocity vector V along x,y,z 

f l i g h t  ve loc i ty  

ve loc i ty  normal t o  body ax i s  of symmetry 

nonrolling orthogonal axes with o r ig in  a t  body center of 
grav i ty  ( f ig .  1) 

orthogonal axes with direct ions f ixed  i n  space and or ig in  
a t  body center  of gravity (fcg.  1) 

angle of a t t ack  (eq. (1)) 

angle of s ides l ip  (eq. (1)) 

damping r a t i o  (eq. (30))  

angle of p i t ch  ( f ig .  1) 

angular displacement o f  plane containing u from xy 
plane ( f ig .  1) 

air  density 

r e su l t an t  angle of attack ( f i g .  1) 

r o l l  angle ( f ig .  1) 
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angle of yaw ( f ig .  1) 

c i r cu la r  frequency 

undamped na tura l  c i r cu la r  frequency (eq. (30) ) 

i n i t i a l  value 

asymptotic value 

ANALYSIS 

The purpose of the  following analysis i s  t o  show t h a t  an e r ro r  e x i s t s  
i n  the  accepted prac t ice  of wri t ing the  aerodynamic forces  and moments 
t h a t  act  on a body of revolution during pi tching and yawing motion. 
show t h i s  c lear ly ,  it i s  desirable  t o  eliminate as many extraneous consid- 
erations as possible.  Thus, the  following conditions a re  imposed: 

3 To 

4 

(1) The vehic le ' s  center of  g rav i ty  t raverses  a s t r a igh t  path. 

(2)  The vehic le ' s  forward veloci ty ,  as measured a t  i t s  center 
of gravi ty ,  i s  constant i n  magnitude. 

( 3 )  The vehic le ' s  e f fec t ive  r o l l i n g  r a t e  i s  small enough t h a t  
Magnus forces  and moments may be considered t o  be negl igible .  
(This condition i s  relaxed i n  a l a t e r  sect ion.)  

These conditions a re  easy t o  visual ize  i f  the  vehicle i s  considered 
t o  be a wind-tunnel model mounted on a bearing which permits t he  model t o  
p i t ch  and yaw, and t o  roll a t  a s low r a t e .  

Coordinate System 

Figure 1 shows the  system of axes generally used i n  the  analysis  of 
bodies with ro t a t iona l  symmetry. 
whose origins l i e  a t  the  center of gravi ty:  The XYZ axes have f ixed 
direct ions i n  space while the  
through the  angles 8 and +. The y a x i s  i s  constrained t o  l i e  i n  the  
XY 

roll symmetry because the  angle 
on the  body only i n  i t s  time r a t e  of change. 

Two s e t s  of orthogonal axes a re  shown 

axes p i t ch  and yaw with the  body 
& xyz 

plane, however, so  t h a t  the  angular pos i t ion  of the  body i n  space i s  
not completely specified.  This i s  permissible f o r  bodies with su f f i c i en t  P 

Cp a f f e c t s  the  aerodynamic forces  ac t ing  
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The ve loc i ty  vector or ien ta t ion  angles a and P ,  defined according 
t o  standard NASA notation as 

a re  equal t o  the  space or ien ta t ion  angles 8 and -$ f o r  the  case under 
consideration f o r  which the path of the center of gravi ty  i s  a s t r a igh t  
l i n e .  
of a t tack  G? and the angle between the  plane containing IS and the  
xy plane. These angles a re  defined as 

Two other or ien ta t ion  angles w i l l  also be used; the  resu l tan t  angle 

s i n  u = G T F  
V 

t a n  A = W v 
x 

where it is  t o  be noted t h a t  u i s  taken as always pos i t ive .  The veloci ty  
components are 

u = V cos a cos p = V cos 

v = V s i n  P = V s i n  G cos A 

w = V s i n  CL cos P = V s i n  u s i n  A 

0 

Then 

sin20 = sin2P + sin2a cos2p 

t a n  A = s i n  a cot p 

t a n  a = t a n  u s i n  A 

s i n  j3 = s i n  u cos A 

which reduce, f o r  small values of a and 

0=- 

A = tan-’$) 

a = G s i n  A 

p = 0 cos h 

P ?  t o  
I 
I 

( 3 )  

(4) 

( 5 )  
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Finally,  the  components of angular ve loc i ty  about the  x y z  axes a re  
given by 

p = 6 - \G s i n  e 

q = e  

r = q COS e 

which reduce, f o r  s m a l l  angles, t o  

q = e  

Customary Practice 

(7) 

A 
3 
6 
5 

Fi r s t ,  the customary method of wri t ing the  forces  and moments corre- 
sponding t o  a pitching and yawing motion will be reviewed t o  show i n  what 
sense it i s  incorrect .  Consider t h a t  the  body executes a motion about i t s  
center of gravi ty  consisting of a r b i t r a r y  var ia t ions  i n  both a and P .  
Then the customry procedwe i s  f i rs t  t o  observe the  motion as it appears 
i n  the  plane containing a and t o  wri te  t he  forces  and moments corre- 
sponding t o  t h a t  motion as though it alone exis ted.  
with a planar motion one would wri te  f o r  

Thus, by analogy 
Cz 

Likewise, observing the motion i n  the  P plane, and using the  propert ies  
of symmetry for a body of revolution, one would wri te  

For use i n  equations of motion it i s  convenient t o  t r ans fe r  these coef- 
f i c i e n t s  t o  axes i n  and normal t o  the  plane of the resu l tan t  angle of 
a t t ack .  The transformation equations a re  

I )  

Y 
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Inser t ing  equations ( 8 )  and (9)  i n  (10) and using the  r e l a t ions  ( 5 )  y ie lds  

A similar procedure f o r  t he  pi tching moment y ie lds  

Cm(Ia) = 0 9 (Cmq + C&) 

It may be ve r i f i ed  by re fer r ing ,  for example, t o  references 1, 2, and 5 
t h a t  equations (11) and (12) a r e  indeed t h e  force and moment coef f ic ien ts  
t h a t  would be used i n  the equations of motion appropriate t o  the  specif ied 
conditions (uniform r e c t i l i n e a r  motion, Magnus forces  neglected) . 

Now, t o  see t h a t  equations (11) and (12) a r e  incorrect ,  consider the 
case of purely c i r cu la r  motion, u = co9stant. 
completely, l e t  us also specify that A 
spin r a t e  @ equal A .  The latter specification, (i, = A, ensures t h a t  the  
body does not spin with respect t o  the  stream crossflow veloci ty ,  so t h a t  
Magnus forces ,  r a the r  than being small, can be sa id  t o  be iden t i ca l ly  
ze r0 . l  Then, with both 0 and constant, a completely steady motion 
e x i s t s  i n  the sense t h a t  every point on the  body experiences a normal flow 
ve loc i ty  t h a t  i s  invariant  with time. Because the s t a b i l i t y  der ivat ives  
C N ~  and C% a re  by def in i t ion  the responses t o  an accelerated uniform 
normal flow, it i s  recognized t h a t  for steady c i r cu la r  motion a l l  evidence 
of these terms must vanish i n  equations (11) and (12) .  Observe t h a t  
CN& and C x  vanish from the  expressions i n  the  plane of the  r e su l t an t  
angle of a t tack  since 
f o r  force and moment normal t o  the plane of the r e su l t an t  angle of a t t ack .  
Hence, equations (11) and (12) cannot be cor rec t .  

To demonstrate the  point 
be constant an: that the  body 

5 = 0 but they do not vanish from the  expressions 

New Formulation 

Having shown t h a t  the customary method of wri t ing the  aerodynamic 
forces  and moments y ie lds  incorrect  r e s u l t s  i n  a t  l e a s t  one l imi t ing  case, 

See sect ion *he accepted pract ice  i s  incorrect on t h i s  point a l so .  
en t i t l ed ,  "Magnus Forces . I r  
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l e t  us now invest igate  the  procedure more closely.  Let u and h vary 
a r b i t r a r i l y  with time and consider the  ve loc i t i e s  normal t o  the  body a x i s  
of symmetry induced by these var ia t ions .  I n  the  u plane the  normal 
veloci ty  i s  composed of t w o  components; one due t o  the  r e su l t an t  angle of 
a t tack ,  Vu, and one due t o  the  ro t a t ion  of t he  body about an axis normal 
t o  the  u plane, -6x. Hence, a t  body s t a t i o n  x i n  the  u plane 

rl. 

c 

The dimensionless accelerat ion of the  normal f l o w  i s  therefore  
A 

5 .. 
I n  equation (14) the  term may be discarded since it yie lds  a 
force proportional t o  pi tching accelerat ion ( C N ~ )  which i s  i n  phase with 
and usually negligible compared t o  i n e r t i a l  terms i n  the  equations of 

must be retained; observe t h a t  6Z/V i s  uniform along the  body x ax i s  
and hence w i l l  lead t o  a normal force proportional t o  
&/V, on t h e  other hand, leads t o  a normal force proportional t o  C N ~ .  
A s  a r e su l t  of these f l o w s ,  there  i s  a normal-force coef f ic ien t  i n  the  
plane of 
t o  t he  plane of 

oxl/V2 

motion. The term ; l /V ,  however, i s  of the  same order as &/V, and 0 

C N ~ .  The term 
b 

u, C N ( ~ ) ,  and a pitching-moment coef f ic ien t  about an ax i s  normal 
u, C m ( U ) ,  which can be wr i t ten  as 

Notr consider the flow i n  the  d i rec t ion  normal t o  the  G plane. The 
velocity normal t o  the  body ax i s  of symmetry is2 

This normal flow varies  l i n e a r l y  with x ,  and hence can only y ie ld  a 
force proportional t o  C N ~ .  The normal-force coef f ic ien t  normal t o  the  
u plane and t h e  pitching-moment coef f ic ien t  about an axis i n  the  u 
plane are therefore  I 

2There i s  ignored here a small normal f l o w  var ia t ion  across t h e  body 
diameter. The quantity neglected is ,  however, antisymmetric with respect * 
t o  t he  diameter and hence should y i e ld  nei ther  a force normal t o  the  u 
plane nor a pitching moment about an axis i n  the  u plane. 



9 

h 

Cm(1u) = u - il c 
V m s  

Equations (15) and (17) a r e  the  new re su l t s ,  which a r e  t o  be compared 
with the  previous r e s u l t s ,  equations (11) and (12). 
evident from inspection of equations (15) and (17) t h a t ,  unlike the  
previous r e s u l t s ,  they reduce properly f o r  c i r cu la r  motion since 
and (2% 
the  u plane. 

It i s  immediately 

C N ~  
do not appear i n  the  expressions f o r  force and moment normal t o  

Let us now attempt t o  discover where the  e r r o r  OCCUTS i n  the previous A 
3 
6 
5 

analysis. 
equations (15a) and (17a) t o  the 

F i r s t ,  t r ans fe r  t he  new re su l t s  f o r  t he  force coef f ic ien ts ,  
a plane by means of 

Inser t ing  equations (l5a) and (17a) i n  (18) gives . 
cy, = - a s i n  A cNOL - + s in  A (c, + c N ~ )  - a - A1 cos A cNq 

cl v 

which becomes, by use of equations (5) ,  

On c ompar i s on 
equation (8), 

of t h i s  r e s u l t  with the corresponding one obtained e a r l i e r ,  
it i s  seen t h a t  the r e su l t s  agree i n  the  terms containing - 

C N ~  and CN but  disagree i n  the  term containing CN;. Therefore, consider 
the  component of normal flow ve loc i ty  i n  t he  
uniform normal accelerat ion.  
veloci ty  aV i n  t he  u plane. It i s  

9’ 
a plane t h a t  leads t o  a 

This component i s  due t o  the  uniform normal 

b Hence the  uniform normal acce lera t ion  i n  the  a plane i s  

A w0 = s i n  A + a i  cos A = 
V 
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c: Examine the  significance of t he  second term, ah cos A. 
the  fac t  t h a t  t he  IJ plane i s  turning a t  a r a t e  h.  Discounting i n t e r -  
ference e f f ec t s ,  however, the  f a c t  t h a t  t he  u 
on the  force i n  the  u plane, and l ikewise must have no bearing on t h e  
projection of t h a t  force i n  the  plane, other than through the  f ac to r ,  
s i n  A. That i s ,  the accelerat ion force i n  the  a plane i s  
- ( ~ z / v )  s i n  A CN;, as given i n  equations (19) and (201, not - (;z/v) CNL 
as given by equation ( 8 ) .  The e r ro r  i n  equation (8) i s  introduced when 
one fails  t o  recognize t h a t  p a r t  of the  normal accelerat ion as viewed i n  
the  u plane i s  not involved i n  the  development of an aeqdynamic force .  
Again consider steady c i r cu la r  motion, u = constant,  fJ = A = constant.  
There is  s t i l l  a uniform normal accelerat ion i n  the  u plane, now due 
en t i r e ly  t o  t he  turning of t he  u plane. The flow a t  the  body i s  ac tua l ly  
completely steady, however, so  t h a t  t he  
force coeff ic ient  must be zero. 
contribution should be a t t r i bu ted  t o  the  term 

It accounts f o r  

plane turns  has no bearing 

a 

CN; contr ibut ion t o  the  t o t a l  
It i s  c lear ,  therefore ,  t h a t  no force 

ah cos h .  

It remains t o  discuss a point which has not been considered, e i the r  
i n  the  former method or the  present development. 
assumed t h a t  the  forces  i n  a plane can be wr i t ten  as though no motion 

f i e l d s .  There i s  no a p r i o r i  reason f o r  assuming t h i s ;  the  hope i s ,  of 
course, t h a t  such in te rac t ions  a re  negl igibly small. 
t h a t  the in te rac t ions  re fer red  t o  need not en t i r e ly  depend f o r  t h e i r  
existence on the  presence of viscous e f f e c t s .  
po ten t ia l  flow may ex i s t ;  i f  so, they can be analyzed and such an analysis  
may lead t o  useful  r e s ~ d t s . ~  I n  a l a t e r  sect ion a simple experiment i s  a l so  
suggested f o r  invest igat ing the  magnitude of in te rac t ions .  

I n  both methods it i s  

e x i s t s  i n  another plane; t h a t  i s ,  t h a t  no in te rac t ions  occur between f l o w  r 

It should be noted 

I n  f a c t ,  components due t o  

Magnus Forces 

The accepted prac t ice  of writ ing the  Magnus forces  can be c r i t i c i z e d  
on t w o  counts: F i r s t ,  it i s  subject t o  the same so r t  of e r ro r  already 
shownto e x i s t  i n  the  forces  due t o  the normal flow; t h a t  i s ,  by consid- 
er ing projections of the  motion as they appear i n  f ixed planes one inad- 
ver tent ly  introduces a spurious accelerat ion force .  
accepted pract ice  it i s  sa id  t h a t  Magnus forces  a re  iden t i ca l ly  zero when 
p, the component of the vehic le ' s  angular veloci ty  about the  ax i s  of 
symmetry, i s  zero. But now c9nsider again c i rcu lar  motion i n  which the  
vehicle spins  a t  a r a t e  fJ = A. The angular ve loc i ty  p i s  not neces- 
s a r i l y  zero, but  %gnus forces  a re  iden t i ca l ly  zero because the vehicle 
does not spin with respect t o  the crossflow veloci ty .  The point i s ,  of 

Second, i n  the  

3For example, with t h e  use of steady po ten t i a l  flow theory, t he  
u plane mentioned i n  antisymmetric component of f l o w  normal t o  the  

footnote 2 can be shown t o  cause a small force t o  ex i s t  i n  t he  u plane. 

D 
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b 

J 

course, t h a t  it i s  the  spin r a t e  r e l a t ive  t o  the  crossflow, 
than p, t h a t  i s  the  s ign i f icant  parameter i n  determing the  

@ - i, ra ther  
Magnus forces .  

The way t o  avoid the e r ro r s  i s  therefore c lear :  The first e r ro r  i s  
avoided by wri t ing the  forces  d i r ec t ly  i n  the  plane of and normal t o  the  
plane of t he  resu l tan t  angle of a t tack.  
recognizing t h a t  Magnus forces  a re  generated by the  e f fec t ive  ro t a t ion  of 
the  body with respect t o  the  crossflow veloci ty ,  t h a t  i s ,  by use of @ - 
instead of p .  
which a r e  t o  be added t o  equations ( l g a )  and (17a) 

The second e r ro r  i s  avoided by 

This procedure gives for the  Magnus force coef f ic ien ts  

Similarly,  t he  Magnus moment coeff ic ients  t o  be added t o  equations (1%) 
and (13) become 

The subscript  P ra ther  than p i s  used i n  the  Magnus coef f ic ien ts  t o  
indicate  c l ea r ly  t h a t  the-der iva t ive  i s - t o  '5)e taken with respect t o  the  
e f fec t ive  spin r a t e ,  (i, - A. Thus, P E Cp - A, and, f o r  example 

Now, compare equations (24) f o r  the Magnus mment coef f ic ien ts  with 
the  expressions used i n  current  pract ice  ( c f .  r e f .  2, f o r  r e c t i l i n e a r  
motion). The l a t t e r  expressions a r e  
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It i s  seen t h a t  equation (26) has an extraneous term 
The more s igni f icant  difference,  however, i s  the  use of 

Cmp& i n  Cm( o) . 
P (= ci) - x) i n  

place of p .  The difference can be made e x p l i c i t  
s m a l l  angles as 

r 1 

by wri t ing P f o r  

(27) 

For rapid spin r a t e s ,  such as those f o r  spinning she l l s ,  t he  second term 
can be negligibly small i n  comparison with Also, f o r  planar motion 
i n  e i ther  the a or the  P plane the  second term i s  iden t i ca l ly  zero. 
Hence, i n  these three  cases, no s igni f icant  e r ro r  i s  introduced by the use 
of p ra ther  than P f o r  the  spin r a t e .  I n  general, however, t he  second 
term can be as large or l a rger  than 
f i a b l e  i n  individual cases only a f t e r  a ca re fu l  analysis of r e l a t i v e  
orders of magnitude. 

p .  

p,  and i t s  neglect would be j u s t i -  

DISCUSSION * 
Significance of New Formulation 

In  order t o  examine the  significance of the  analysis  i n  the preceding 
sections, consider now the  motion of a nonspinning body which i s  f r e e  t o  
p i t ch  and yaw. By a nonspinning body i s  meant here t h a t  ‘p = 0 .  A s  
usually wri t ten,  the  equations of motion i n  the  coordinates a and P 
would then be 

\l 

i 
‘ 1  

Ici = Q$z am, + - &.z (c c v 
.. r 

ms + c 1 4  

1 

where the equations have been l inear ized  on the  bas i s  t h a t  a,P,a,i a re  
small and t h a t  t h e i r  squares and products may be neglected. These equa- 
t i ons  transform, i n  o,A coordinates, t o  
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a 

A 

5 

The solut ion of equations (28) i s  

E = Eoe -'writ s i n ( w t  + 7 € )  

where 

Eo = J E i 2  + -$ 1 .  ( E i  - pn€i )2  

A s  a r e s u l t  of the  harmonic solution (30) for both a, and P ,  t he  
motion when p lo t t ed  i n  C L , ~  coordinates cons is t s  of lirres, c i r c l e s ,  or 
e l l i p s e s ,  dependent only on t h e  i n i t i a l  conditions.  Since the  a and P 
motions have iden t i ca l  periods and damping f ac to r s ,  the  type of motion 
determined by the  i n i t i a l  conditions ( l i nes ,  c i r c l e s ,  or e l l i p s e s )  i s  
incapable of degenerating i n t o  e i the r  of t he  other two types, but must 
e x i s t  f o r  a l l  f i n i t e  time. 

Now consider the equations of motion i n  the  o,h coordinates corre- 
sponding TO the  new formulation. 
w i l l  be retained; the  aerodynamic terms, however, a re  given by equations 
(lp), (lm), and (24) with @ = 0 .  

The i n e r t i a  terms given i n  equations (29) 
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I n  both equations the  t h i r d  term on tALe right-hand side i s  i n  phase with 
the  second i n e r t i a  term, and hence can generally be neglected by comparison. 
I n  t h i s  case the  equations become 

These equations transform i n  a,P coordinates t o  

(33) 4 

An important point should be noted here; whereas the  equations of 
motion as usually wr i t ten  a re  l i n e a r  i n  coordinates (eqs .  ( 2 8 ) ) J  
t he  equations of motion as formulated i n  t h i s  report  (eqs.  (32) and (33))  
a r e  inherently nonlinear and no closed solut ion corresponding t o  equa- 
t i o n  (30) i s  possible.  

u u,p 

A f i r s t  i n t eg ra l  of the  second of equations (32) may be obtained i f  
it i s  multiplied by rs: 

where 

Substi tuting equation (34) i n  the  first of equations (32) gives ., 

8 

where 5 and un carry the  same de f in i t i on  given previously.  
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The s t a b i l i t y  of t he  motion as given by the  solut ion of equation (35) 
i s  determined by the  signs of both 
term i s  pos i t ive  the  motion i s  unstable.4 
i s  t h a t  for which Pa then become 

Cmq - Cmpa and Cms + (2%; i f  e i t h e r  
A case of par t icu lar  i n t e r e s t  

C 3  = Cm and Cmq + Cm& < 0.  Equations (34) and (35) 

Several in te res t ing  fea tures  of the motion can be deduced without 
ac tua l ly  solving equation (37) : 

(1) If C = 0 then A = 0 from equation ( 3 6 )  and the  solut ion 
of equation ( 3 7 )  i s  given by equation ( 3 0 )  with 
having the  same value for both a and p. Then the  
motion i s  planar,  and when p lo t ted  i n  a,p coordinates, 
appears as a l i n e .  

7E 

If C # 0, then became of the energy d iss ipa t ion  t e r n  
?r;% i n  equation (37), as t + w ,  iftdio, = m, 
h+wn. Since u = 0 s i n  A, p = CT cos A, then 
wC[a = U a  s i n  %t, P-P,. = O a  COS %t, and the  f inal  
motion p lo t ted  i n  a , p  coordinates i s  c i r cu la r .  This 
motion i s  given by the  solution (30) only with the  
conditions a. = Po, ^JCL = y rf: goo, and the  r e s t r i c t i o n  
t h a t  the  motion i s  complete P y undamped; t h a t  i s ,  5 = 0 .  

(3) If the  energy d iss ipa t ion  t e r m  i n  equation (37) i s  
zero, equations (36) and (37) transform i n t o  equa- 
t i ons  (28) with Cms + Cm& = 0. 
then equation ( 3 0 )  with zero exponential, and t h e  
resu l t ing  motion i n  the a,p plane, with the  proper 
i n i t i a l  conditions, i s  e l l i p t i c a l .  Then i f  t he  
energy d iss ipa t ion  term i n  equation (37) i s  not zero 
but su f f i c i en t ly  small, with the  proper i n i t i a l  condi- 
t i ons  the solut ion of equations (36) and ( 3 7 )  must 
a l s o  be approximately e l l i p t i c a l  i n  t he  C L , ~  plane, 
damping f i n a l l y  t o  the  circular motion given by the  
asymptotic values % and Pa. 

The solut ion i s  

4These s t a b i l i t y  c r i t e r i a  apply only t o  the  case of uniform r e c t i l i n e a r  
motion being considered. I n  the general case, i n  which transverse motion 
of the  center of gravi ty  and changes in  forward speed a re  permitted, t he  
s t a b i l i t y  i s  influenced i n  addi t ion by the  vehicle 's  l i f t - cu rve  slope and 
drag coef f ic ien t .  
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It can be seen, then, t h a t  the  equations of motion, as usually 
formulated, y i e ld  motions dependent only on i n i t i a l  conditions, whereas 
a more correct formulation provides a mechanism by means of which the  
motion can degenerate t o  the  c i r cu la r  s t a t e .  
the aerodynamic terms are l i n e a r  functions of t h e i r  respective var iables .  
These r e su l t s  a re  of pa r t i cu la r  i n t e r e s t  because degeneration of motion 
t o  the  circular s t a t e  has been observed recent ly  i n  b a l l i s t i c  range f i r i n g s  
(see r e f .  6 ) ,  and attempts t o  explain the  phenomenon (ref.  71, by means 
of the  usual formulation of t he  equations, have been successful on ly  
through the  inclusion of aerodynamic nonl inear i t ies  i n  the  angles and 
angular ve loc i t i e s .  

This i s  t r u e  even though 

A 
3 
6 
5 

One fur ther  in te res t ing  deduction can be made from consideration of 

precessional motion. 

ident ica l  t o  equations (32) ,  can be expressed i n  the  forms (34) and (35) 
with k replaced by 25un. This corresponds t o  the  condition Cmh = -&, 

the  general equations (34) and (35); t h a t  i s ,  the  general  p robabi l i ty  of 

writ ten,  equations (29) .  Note t h a t  equations ( 2 9 ) ,  because t h e i r  form i s  

and the solution i s  given by equation (30) .  

To see t h i s ,  consider f i rs t  the  equations as usual ly  

Then since cr2 = a2 + p2 9 

v 

*r 

Subs;itution i n t o  equation (34) eliminates the  exponential time dependency 
of A giving 

C A =  
zo2sin2(wt + ya) + po2sin2(wt + 7p) 

That i s ,  x i s  a periodic function of time. Integrat ion of over a 
cycle of cr yie lds  a constant, w, f o r  the  average value of per cycle 
of cr. B u t  2u i s  the  c i r cu la r  frequency of cr, so t h a t  u completes 
precisely two cycles i n  the  time A completes one revolution. Thus, with 
0 = 0, the solut ion of the  equations of motion as usually wr i t ten  (and 
with l inear  aerodynamics) precludes the  existence of precessional motion, 
a well-known r e s u l t .  

Now consider the  case Cmpa # - CG. By analogy with the  solut ion of 
a l inear  second-order d i f f e r e n t i a l  equation, the  period of 0 obtained 
from the solut ion of equation (35) w i l l  be r e l a t i v e l y  independent of both 
( and k The exponential 
decay ra te  of 0 w i l l  no longer cance ls tha t  for A i n  equation (34),  
however, s o  t h a t  the average value of A per cycle of cr w i l l  change 
from cycle t o  cycle, thus r e su l t i ng  i n  a motion which w i l l  precess.  

f o r  m o s t  p r ac t i ca l  values of these constants.  

r) 

Figures 2 (a ) ,  2(b) ,  and 2(c)  show motions computed from equations (34) 
and (35); the  constants used i n  the  computations a re  given i n  t ab le  I. 
I n  figure 2 (a ) ,  t he  value of Cmpa i s  negative and equal t o  Cmq and as 
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a r e s u l t  t h e  motion degenerates t o  a c i r c l e  as previously described. 
i s  pos i t ive  and of the same order of magnitude as f igure  2(b) ,  c 

Cq; note t h a t  the  motion precesses s l igh t ly .  
pos i t ive  and perhaps an order of magnitude l a rge r  than 
be seen, causes an in i t ia l ly  large precession. The value of Cmpa i n  
f igu re  2(c)  i s  probably un rea l i s t i ca l ly  la rge ,  however; f o r  values of 

l i k e l y  t o  be encountered i n  pract ice  the precessional motion i s  
more l i k e l y  t o  resemble t h a t  of f igure  2(b) .  

I n  

mPCt 
I n  f igure  2 (c ) ,  Cm% i s  

Cmq and, as can 

CmPa 

Suggested Experiment 

A s  has been mentioned, the analysis given here, while it cor rec ts  an 
e r r o r  made i n  previous analyses, s t i l l  contains with those analyses an 
unexamined assumption; namely, t h a t  the forces  act ing i n  a plane due t o  
motion i n  t h a t  plane a re  unaffected by motion i n  another plane. An exper- 
iment i s  proposed below f o r  investigating the  v a l i d i t y  of t h i s  assumption. 

Consider f irst  a body undergoiw c i rcu lar  Fotion, and, as before, 
l e t  t he  spin r a t e  (b be equal t o  A, and l e t  h be constant. Then 
Magnus forces  are iden t i ca l ly  zero and the rnotion i s  completely steady. 
The normal ve loc i t i e s  a r e  W/V = 5 = constant i n  the  plane of a and 
W/V = d x / V  = Kx normal t o  the  plane of u, where K i s  a constant.  
These normal ve loc i t ies  can be simulated i n  the wind tunnel with a 
s ta t ionary  model. The normal veloci ty  i n  the  cr plane i s  reproduced 
simply by placing the  model at  an  angle  of a t tack  equal t o  u. The normal 
ve loc i ty  i n  the  plane normal t o  the  5 plane i s  simulated f o r  small u 
by having the  model's axis of symmetry curved i n  that plane so t h a t  t he  
free-stream veloci ty  component normal t o  t h e  a x i s  va r i e s  l i n e a r l y  with 
Then the  e f f e c t  of motion i n  the  direct ion normal t o  the  u plane on 
forces  i n  the  u plane would be inferred from differences between forces  
i n  the  u plane measured with the  curved model and those measured a t  the  
same angle of a t tack  with a model having no curvature. 
e f f e c t  of motion i n  the  0 plane on forces i n  t h e  plane normal t o  the  u 
plane would be infer red  from differences between forces  i n  the  l a t t e r  
plane measured with the curved model at angle of a t t ack  u and a t  zero 
angle of a t tack .  

x. 

Conversely, t he  

Consider next an unsteady motion. Let the.body undergo a near ly  
c i r cu la r  e l l i p t i c a l  motion i n  which again 
Magnus forces  a re  zero but  t he  motion is  unsteady because a var i e s  with 
time. Observe t h a t  during t h i s  motion u var ies  per iodical ly  about a 
constant inc l ina t ion .  Hence the normal ve loc i ty  i n  the  plane of 5 i s  
W/V = u - &/V with 5 = uo a cos ut. Normal t o  the  plane of u t he  
normal ve loc i ty  i s  W/V 2 Uo(Ax/V) =: Kx so long as 5, >> a .  The foregoing 
normal ve loc i t i e s  can again be simulated i n  the  wind tunnel i f  t he  curved 
model i s  mounted on a dynamic balance. 
plane i s  reproduced by placing the  model a t  angle of a t tack  

rb = h :: constant. Then again 

The normal ve loc i ty  i n  the  5 

uo and causing 
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it t o  osc i l l a t e  with amplitude 
normal t o  the  plane of 
x 
e l l i p t i c a l  motion the  body must complete-two osc i l l a t ions  i n  the time 
completes one revolution. 
r e l a t e s  t he  model's reduced frequency, angle of a t tack ,  and curvature. 
A s  before, the e f f ec t  of motion normal t o  the  
u plane would be infer red  from differences between osc i l l a to ry  forces  
i n  the  
same angle of a t tack ,  frequency, and amplitude of o sc i l l a t ion  with a model 
having no curvature. The e f f ec t  of unsteady motion i n  the  u plane on 
forces  i n  the plane normal t o  the  cr plane would be infer red  from d i f f e r -  
ences between forces  i n  the  l a t t e r ' p l a n e  measured with the  curved model 
f i rs t  osc i l la t ing  i n  the  cr plane a t  mean angle of a t tack  uo and then 
s ta t ionary a t  t h a t  angle of a t tack .  

a. The model's curvature i s  i n  the  plane 
u and again simulates the  l i n e a r  var ia t ion  i n  

of normal veloci ty  i n  t h a t  plane. Observe that t o  approximate an 
h 

Hence, w = 2A, a compatibil i ty condition t h a t  

u plane on forces  i n  t h e  

cr plane measured with the  curved model and those measured a t  the  

CONCLUDING REMARKS 

t 
The foregoing analysis  has shown t h a t  s ign i f icant  e r ro r s  e x i s t  i n  

A more 
the accepted pract ice  of wri t ing the aerodynamic forces  and moments on a 

correct  formulation has been presented which shows tha t  even w i t h  l i n e a r  
aerodynamic coef f ic ien ts  the  d i f f e r e n t i a l  equations governing the  motion 
a re  fundamentally nonlinear. This permits an explanation of a wider c l a s s  
of motions than has been previously considered possible under the  r e s t r i c -  
t i o n  of l i n e a r  aerodynamics. I n  pa r t i cu la r ,  the degeneration of motion 
t o  the  c i r cu la r  s t a t e ,  which has been observed experimentally, i s  explain- 
able  under the revised theory without t he  necessi ty  of introducing non- 
l i n e a r  aerodynamics. 

body of revolution during combined pi tching and yawing motion. *- 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Jan. 14,  1960 
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TABLE I.- CONSTANTS USED IN THE COMPUTATIONS 

27.8 1.32 
41.6 5.26 

c 

E 

I 
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(a) Cmp, = c q ,  

Figure 2.- Pi tch ing  and yawing motion of' a nonspinning nonplunging body. 
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Figure 2. - Continued. 
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Figure 2. - Concluded. 
NASA - Langley Field, Va. A-365 


